贝叶斯优化(BO)是一种基于替代物的全球优化策略,依靠高斯流程回归(GPR)模型来近似目标函数和采集功能,以建议候选点。众所周知,对于高维问题,BO不能很好地扩展,因为GPR模型需要更多的数据点才能实现足够的准确性,并且在高维度中,获取优化在计算上变得昂贵。最近的几项旨在解决这些问题的旨在,例如,实现在线变量选择的方法或对原始搜索空间的较低维度次级manifold进行搜索。本文提出了我们以前的PCA-BO的工作,该作品学习了线性子字节,因此提出了一种新颖的内核PCA辅助BO(KPCA-BO)算法,该算法将非线性子词嵌入搜索空间中并在搜索空间中执行BO这个子manifold。直观地,在较低维度的子序列上构建GPR模型有助于提高建模准确性,而无需从目标函数中获得更多数据。此外,我们的方法定义了较低维度的子元素的采集函数,从而使采集优化更易于管理。我们将KPCA-BO与香草bo的性能以及有关可可/BBOB基准套件的多模式问题的PCA-BO进行了比较。经验结果表明,在大多数测试问题上,KPCA-BO在收敛速度方面都优于BO,并且当维度增加时,这种好处变得更加显着。对于60D功能,KPCA-BO在许多测试用例中取得比PCA-BO更好的结果。与Vanilla BO相比,它有效地减少了训练GPR模型所需的CPU时间并优化与香草BO相比的采集功能。
translated by 谷歌翻译
Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based classification to improve bladder tissue classification when annotations are limited in multi-domain data.
translated by 谷歌翻译
The receptive field (RF), which determines the region of time series to be ``seen'' and used, is critical to improve the performance for time series classification (TSC). However, the variation of signal scales across and within time series data, makes it challenging to decide on proper RF sizes for TSC. In this paper, we propose a dynamic sparse network (DSN) with sparse connections for TSC, which can learn to cover various RF without cumbersome hyper-parameters tuning. The kernels in each sparse layer are sparse and can be explored under the constraint regions by dynamic sparse training, which makes it possible to reduce the resource cost. The experimental results show that the proposed DSN model can achieve state-of-art performance on both univariate and multivariate TSC datasets with less than 50\% computational cost compared with recent baseline methods, opening the path towards more accurate resource-aware methods for time series analyses. Our code is publicly available at: https://github.com/QiaoXiao7282/DSN.
translated by 谷歌翻译
While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results.
translated by 谷歌翻译
We pose video object segmentation as spectral graph clustering in space and time, with one graph node for each pixel and edges forming local space-time neighborhoods. We claim that the strongest cluster in this video graph represents the salient object. We start by introducing a novel and efficient method based on 3D filtering for approximating the spectral solution, as the principal eigenvector of the graph's adjacency matrix, without explicitly building the matrix. This key property allows us to have a fast parallel implementation on GPU, orders of magnitude faster than classical approaches for computing the eigenvector. Our motivation for a spectral space-time clustering approach, unique in video semantic segmentation literature, is that such clustering is dedicated to preserving object consistency over time, which we evaluate using our novel segmentation consistency measure. Further on, we show how to efficiently learn the solution over multiple input feature channels. Finally, we extend the formulation of our approach beyond the segmentation task, into the realm of object tracking. In extensive experiments we show significant improvements over top methods, as well as over powerful ensembles that combine them, achieving state-of-the-art on multiple benchmarks, both for tracking and segmentation.
translated by 谷歌翻译
Metric Elicitation (ME) is a framework for eliciting classification metrics that better align with implicit user preferences based on the task and context. The existing ME strategy so far is based on the assumption that users can most easily provide preference feedback over classifier statistics such as confusion matrices. This work examines ME, by providing a first ever implementation of the ME strategy. Specifically, we create a web-based ME interface and conduct a user study that elicits users' preferred metrics in a binary classification setting. We discuss the study findings and present guidelines for future research in this direction.
translated by 谷歌翻译
Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device interoperability is essential for a compression codec to be deployed, i.e., encoding and decoding on different CPUs or GPUs should be error-free and with negligible performance reduction. In this paper, we present a method to solve the device interoperability problem of a state-of-the-art image compression network. We implement quantization to entropy networks which output entropy parameters. We suggest a simple method which can ensure cross-platform encoding and decoding, and can be implemented quickly with minor performance deviation, of 0.3% BD-rate, from floating point model results.
translated by 谷歌翻译
Producing high-quality forecasts of key climate variables such as temperature and precipitation on subseasonal time scales has long been a gap in operational forecasting. Recent studies have shown promising results using machine learning (ML) models to advance subseasonal forecasting (SSF), but several open questions remain. First, several past approaches use the average of an ensemble of physics-based forecasts as an input feature of these models. However, ensemble forecasts contain information that can aid prediction beyond only the ensemble mean. Second, past methods have focused on average performance, whereas forecasts of extreme events are far more important for planning and mitigation purposes. Third, climate forecasts correspond to a spatially-varying collection of forecasts, and different methods account for spatial variability in the response differently. Trade-offs between different approaches may be mitigated with model stacking. This paper describes the application of a variety of ML methods used to predict monthly average precipitation and two meter temperature using physics-based predictions (ensemble forecasts) and observational data such as relative humidity, pressure at sea level, or geopotential height, two weeks in advance for the whole continental United States. Regression, quantile regression, and tercile classification tasks using linear models, random forests, convolutional neural networks, and stacked models are considered. The proposed models outperform common baselines such as historical averages (or quantiles) and ensemble averages (or quantiles). This paper further includes an investigation of feature importance, trade-offs between using the full ensemble or only the ensemble average, and different modes of accounting for spatial variability.
translated by 谷歌翻译
This letter focuses on the task of Multi-Target Multi-Camera vehicle tracking. We propose to associate single-camera trajectories into multi-camera global trajectories by training a Graph Convolutional Network. Our approach simultaneously processes all cameras providing a global solution, and it is also robust to large cameras unsynchronizations. Furthermore, we design a new loss function to deal with class imbalance. Our proposal outperforms the related work showing better generalization and without requiring ad-hoc manual annotations or thresholds, unlike compared approaches.
translated by 谷歌翻译
Current SQL generators based on pre-trained language models struggle to answer complex questions requiring domain context or understanding fine-grained table structure. Humans would deal with these unknowns by reasoning over the documentation of the tables. Based on this hypothesis, we propose DocuT5, which uses off-the-shelf language model architecture and injects knowledge from external `documentation' to improve domain generalization. We perform experiments on the Spider family of datasets that contain complex questions that are cross-domain and multi-table. Specifically, we develop a new text-to-SQL failure taxonomy and find that 19.6% of errors are due to foreign key mistakes, and 49.2% are due to a lack of domain knowledge. We proposed DocuT5, a method that captures knowledge from (1) table structure context of foreign keys and (2) domain knowledge through contextualizing tables and columns. Both types of knowledge improve over state-of-the-art T5 with constrained decoding on Spider, and domain knowledge produces state-of-the-art comparable effectiveness on Spider-DK and Spider-SYN datasets.
translated by 谷歌翻译